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What contribution does a word like “true” make to the content of whole
utterances containing it—what is its semantic value? I have tried to argue else-
where that the best answer to this question is one which takes the semantic
value of “true” and related semantic terms to be a kind of rule or procedure
which pairs utterances with assertoric content. This supposition has the po-
tential to ground fully general foundational work in the philosophy of language
while explaining some very peculiar features of the truth predicate’s composi-
tional behavior.1 I also believe this idea can be part of a larger strategy for
diagnosing and resolving the semantic paradoxes. I don’t want to discuss these
points here. Instead, my goal is simply to give a clearer, and more systematic,
account of the particular kind of procedure I think we should associate with the
truth predicate as its meaning, and to explore the formal consequences of doing
so.

Many aspects of the formalism are not entirely novel: the appeal to a special
notion of ‘semantic dependence’, the use of supervaluations, and the accommo-
dation of a kind of token-sensitivity for uses of the truth predicate, for example.
What is novel about the semantics is the combination of these features, and the
unique issues that their combination raises. I’ll begin by laying out the core
elements of the theory in §§1–3. These elements generate the need for a special
analog of a consistency proof—a kind of coherence result. I’ll prove this in §4
and explore the salient features of the resulting semantics in §§5–6.

1 Preliminaries

My main project is a familiar one: to take an interpreted formal language
capable of self-reference and extend it to a new interpreted formal language
capable of discussing its own semantic properties. One of my guiding principles
is to mind special structural features of natural language use that may play
an ancillary role in this task. Because of this, I’ll build three special features
into my ‘base’ interpreted languages, which I take to be relevant to semantic
self-description in natural language.

First, for both empirical and theoretical reasons, I believe that utterances of

∗In formulating the ideas of this paper, I’ve benefited tremendously from helpful discussions
with Sharon Berry, Jon Litland, Bernhard Nickel, and especially Warren Goldfarb and Peter
Koellner.

1See Shaw (forthcomingb) for a discussion.
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syntactically well-formed sentences of a language, consisting of only meaningful
terms, may nonetheless be semantically defective in the sense that they fail
to be truth-evaluable.2 In part because of the paradoxes, I take utterances of
sentences containing the truth predicate to be no exception. Consequently, I’ll
be working with trivalent models for a language governed by the weak Kleene
tables for connectives.3 Failure of truth-evaluability marks a special kind of
semantic defect, but the nature of this defect is largely irrelevant for present
modeling purposes.

Second, in connection with the assumption of trivalence, I make use of bi-
nary generalized quantifiers.4 Aside from the strong empirical grounds for this
treatment of natural language quantification, generalized quantifiers with a re-
strictor are indispensable in properly interpreting quantified statements in the
trivalent setting. As is well known, unrestricted quantifiers in trivalent models
can be unnaturally prone to take on the third, defective, truth value because
of their broad range of quantification. These considerations are relevant to the
ability of a language to appropriately state generalities about its own semantic
structure—a well-known stumbling block for trivalent theories of truth. A goal
of the ensuing formalism is to skirt as many such difficulties as possible.

Third, I take it that utterances, and not sentences, are the best candidates for
truth-evaluability.5 Moreover, I believe that taking sentence types as bearers of
truth not only cripples a proper representation of the compositional semantics
for terms like “true”, but must be avoided to get a semantics which skirts
paradox while salvaging the greatest amount of semantic expressive power.

My motivations for this last view, which I can only give here in the barest
outlines are as follows. As already alluded to, I hold a familiar view that para-
doxical utterances bear a special kind of semantic defect, resulting in truth-
valuelessness. Additionally, though, I believe that distinct utterances of the
same sentence type without any normally context-sensitive expressions differ
as to whether or not they witness paradox, and hence the relevant semantic
defect. The basic idea here is familiar from both Gaifman (1992, 2000) and
Glanzberg (2001) as regards what Gaifman calls the “two-line paradox”. Here
is the version of relevance to semantic defect:

Jones at t0: “What Jones utters at t0 is false or defective.”

Jane at t1: “What Jones utters at t0 is false or defective.”

Jones and Jane utter the same sentence, and Jones’ utterance is paradoxical for
familiar reasons. If one thinks that paradoxical utterances are defective, and

2I think a strong empirical case can be made for such defects from consideration of se-
mantic anomaly. See Shaw (forthcominga) for a discussion. My foundational grounds for
countenancing semantic defect arise from more controversial views about the nature of the
speech act of assertion. See Shaw (forthcomingc).

3The choice of the weak Kleene tables is based partly on considerations of simplicity,
and there will be no special bar in the discussion to follow in integrating other schemes for
connectives and quantifiers.

4See Glanzberg (2006) for a helpful survey of the topic.
5This is compatible with the claim that utterances might bear their truth values deriva-

tively, for example through their relation to more ‘primary’ truth-bearer such as a proposition.
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therefore not truth-evaluable, then Jones’ utterance will be truth-valueless. If
we hold firm to this claim, there seems to be something correct about what
Jane is saying, even though it is a repetition of Jones’ uttered sentence. For
certain special reasons, I think we can and should take Jane’s utterance to be
true, pure and simple, while coherently maintaining that Jones’ utterance is
not. The reasons for this have to do with the meanings I think semantic words
like “true” and “false” have, and the nature of semantic defect and how it is
reported. I won’t be able to enter into most details of this story here, though
a crucial component of the story about the meaning of semantic words is the
idea I’ve already alluded to: that they are given by special kinds of procedures.
Some of the evidence for, and benefits from, this idea are found elsewhere.6 My
purpose here, though, is to formalize the relevant procedures and show them to
be coherent, given separate motivations for my preferred treatment of paradox.

It’s worth mentioning that although I take a resolution to the paradoxes to
involve sensitivities witnessed at the level of utterances in the way above, this
sensitivity is not an instance of normal modes of context sensitivity.7 For this
reason, some features of a standard Kaplanian representation of the involvement
of context will be unsuitable for my purposes. In particular, my system will have
more lax constraints on how truth-values could be distributed among multiple
tokenings of the same sentence type. The nature of this token-sensitive allotment
of truth-values, and how it differs from some normal modes of context sensitivity,
will hopefully become a little clearer as the system is developed.

With these preliminaries out of the way, let me now add to some famil-
iar definitions that together will characterize the notion of a ‘base’ interpreted
language. I’ll take languages, terms, and formulas to be defined in the usual
way for a first-order language containing negation and conjunction as its sole
connectives, but adjusted to treat the syntax of the universal and existential
quantifiers as binary generalized quantifiers, as per my second preparatory point
above. The sentences of such a language can be used to model the properties
of natural language sentence types. But, as per my third preparatory point
above, we will also need a formal representation of sentence tokens, which will
eventually be the proper bearers of truth-values. To accomplish this, I’ll use an
indexed sentence type to represent a tokening of that type, allowing multiple
indices for the same sentence.

Definition 1.1. Let c1, c2, c3, . . . be a countable set of tokening parameters.

Definition 1.2. An utterance U is a sentence φ such that it, and each of its
sub-sentences, is indexed by a distinct tokening parameter.

When not subscripted, c, c′, etc. are used metalinguistically to talk about ut-
terances’ tokening parameters schematically. So, for example, φc schematically

6Again in Shaw (forthcomingb).
7In this way I depart from Glanzberg’s response to the two-line paradox. Glanzberg treats

the sensitivity here as an ‘extraordinary’ kind, but one which still is modeled through shifting
extension assignments to “true”. Gaifman’s approach to paradox and mine, by contrast, are
very closely related, but there are important differences which are in part the occasion for this
paper. See p.9 for a brief discussion.
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denotes an utterance of the sentence φ indexed by some tokening parameter c.
We can model a series of tokens of a single sentence type with a set of

utterances of the sentence, in my defined sense, each indexed with distinct
tokening parameters. It may help to think of a tokening parameter as something
like a spacio-temporal location where the sentence type is tokened. Tokening
parameters can also be thought of as labeling truth-bearers. Not only do tokens
of whole sentences bear truth-values, but so too do their constituent tokened
sub-sentences. This is why we index these as well.

Example 1.1. The following are utterances of a language L containing a binary
relation symbol R, a unary relation symbol P and constants including a and b.

Rabc3

(∀v1 : v1 = a)((∃v2 : Rv1v2)(Rv2a))c5

(¬(Pac1 ∧ Pbc2)c3)c4

(∀v2 : Pv2)((Pv2 ∧Rbac2))c4

((∃v1 : (v1 = v1))((Rv1a)c5 ∧ (∃v1 : (v1 = v1))(Rav1)c3)c4

If we model a set of actual sentence tokens with a set of utterances in the
way I am suggesting, by ensuring one utterance per sentence token that receives
a truth-value assignment, then the resulting set of utterances will have the
following simple set of formal properties.

Definition 1.3. A set of utterances U is natural if

(i) no tokening parameter c indexes more than one sentence type among
the utterances of U ,

(ii) if φc ∈ U , and ψc′ is an utterance that is a proper part of φc, then
ψc′ ∈ U .

(iii) if φc occurs in two utterances ψc′ 6= θc′′ , then either ψc′ is a constituent
utterance of θc′′ or θc′′ is a constituent utterance of ψc′ .

(i) ensures every utterance is an utterance of exactly one sentence type, and
therewith that a tokening parameter c always picks out at most one utterance
in U . (ii) ensures every uttered sub-sentence of an uttered sentence is taken into
account. This will be important since these tokens are assigned truth values, and
we will want truth-value assignments to parts and wholes to be appropriately
related. Finally, (iii) ensures that no single utterance is a component part of
two distinct utterances which would occur at different places and times.

Example 1.2. The following is an example of a natural set of utterances for
the language recently considered.
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U = {(Pac1 ∧ ((¬Pbc2)c3 ∧Rbac4)c5)c6 ,
(Rbac7 ∧Raac8)c9
Pac1 ,
P bc2 ,
(¬Pbc2)c3 ,
Rbac4 ,
((¬Pbc2)c3 ∧Rbac4)c5
Rbac7
Raac8}

A natural set of utterances, in my sense, is designed to model concrete, ac-
tualized, uttered sentence tokens in some possible situation. Though utterances
are the proper bearers of truth values in my system, I will assume that my ‘base’
interpreted language is one which exhibits no kind of sensitivity to the allotment
of truth values at the level of sentence tokens, whether due to standard forms of
context sensitivity or otherwise. Consequently, we can begin by characterizing
more or less familiar trivalent models for the language.

As such a base L-model M (often just a ‘model’) supplies a universe of
discourse MM, and a partial interpretation function IM mapping predicates
symbols R to disjoint extension/anti-extension pairs 〈RMt , RMf 〉. For simplicity
I’ll assume functions symbols are always assigned total functions as interpreta-
tions. A peculiarity of my base models is that I will stipulate that they contain
information about ‘which utterances exist’, that is, which natural set of utter-
ances UM of the language is available for the allotment of truth-values.

Note that since I allow base models to specify a partial interpretation func-
tion, the recursive clauses giving the interpretation of a sentence (or formula at
a variable assignment) may leave it undefined. Being undefined is different from
being assigned the third, defective, truth-value u. So base models may effect a
four-fold division of sentences (into t, f, u and undefined).

As alluded to before, I’ll adopt a weak Kleene scheme for connectives. We
face a choice point here for how to treat generalized quantifiers in the trivalent
setting. As I noted earlier, my motivations for using generalized quantifiers
are to help avoid over-inheritance of defective status. Accordingly, I treat the
truth-values of quantified statements as always ascertained relative to the ob-
jects satisfying the quantifier restrictor. Thus the restrictor never contributes
to defective status—it only ever contributes a set of objects to which further
predications are made by a quantifier matrix. How to set the contribution of
quantifier matrices is something on which I have no particular commitments.
Here I’ll implement a scheme on which quantified statements are defective only
when all objects satisfying the quantifier restrictor make the matrix defective
though, as always, other schemes can be accommodated as well. So the clauses
for quantifiers will be as follows:
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〚(∀v : φ)(ψ)〛M,g
=



t if {a | 〚φ〛M,g[v→a]
= t} ⊆

{a | 〚ψ〛M,g[v→a]
= t}

u if {a | 〚φ〛M,g[v→a]
= t} ⊆

{a | 〚ψ〛M,g[v→a]
= u}

f otherwise

〚(∃v : φ)(ψ)〛M,g
=



t if {a | 〚φ〛M,g[v→a]
= t}∩

{a | 〚ψ〛M,g[v→a]
= t} 6= ∅

u if {a | 〚φ〛M,g[v→a]
= t} ⊆

{a | 〚ψ〛M,g[v→a]
= u}

f otherwise

These recursive clauses allow us to define the denotations of a sentence φ in
a model, 〚φ〛M, in the usual way. I have stressed that sentence tokens and not
sentence types are the proper bearers of truth. But since our base interpreted
languages were stipulated to exhibit no context sensitivity of any kind, we can
consider the truth-value assignment to sentence tokens to be inherited from our
provisional assignment of truth-values to types.

Definition 1.4. If φc ∈ U , then 〚φc〛
M

= 〚φ〛M.

2 Semantic Dependence

My task begins in the familiar way, with a base model of the sort just speci-
fied which contains uninterpreted semantic vocabulary. In particular, I’ll work
with a base model M for a language L containing T (for “truth”) and U (for
“defectiveness”) as unary predicates. The model’s interpretation function IM
is undefined only at T and U . It will be helpful to have a name for the uninter-
preted vocabulary.

Definition 2.1. T and U are semantic predicates.

By definition our base model M specifies a natural set of utterances UM of
sentences from L in the universe of discourse of the model MM. We can assume
that the model has some modes, perhaps stipulative ones, for referring to the
utterances in UM, and that these modes are sufficient for generating the kinds
of self-reference required for paradox. To help represent this capacity, I’ll make
a slightly non-standard use of corner quotes: pφcq will be used schematically to
represent any term whose denotation in M is the utterance φc.

The goal of this paper is to show how truth-values are allotted among the
utterances in UM, where the difficulty in this task is to say how utterances
containing semantic predicates like T and U get the truth values they have.
As stressed before, in this task I take the ‘meaning’ of the terms T and U to
be given by a kind of procedure. In this section, I will to lay out some of the
technical apparatus needed to characterize the procedure, and how it generates
a truth truth-value assignment to UM.
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But before I begin, I’d like to give an informal characterization of what it
means to take the meaning of the truth predicate to be a kind of procedure, and
what procedure I have in mind. Consider a very simple case of three utterances
(ua)–(uc), two of which use the truth predicate.

Alice: (ua) I’m hungry.

Bert : (ub) What Alice just said is true.

Charles: (uc) What Bert just said is true.

If called on to assess the truth-value of Charles’ (uc), speakers will exhibit a
natural and familiar pattern of reasoning: first they will find out ‘what Bert
just said’—minimally what utterance he produced. Then they will, on the basis
of (ub) find out what Alice said. They will then check Alice’s utterance ‘against
the facts’, use this information to establish the truth or falsity of (ua), then use
that to assess (ub), and finally use that information to assess (uc).

This simple and familiar example brings to light a vague notion that I would
eventually like to render more precise—that of semantic dependence. Because
(uc) attributes a truth-value to (ub), what truth value (uc) bears seems to depend
on what truth value (ub) bears. Likewise for (ub) as regards (ua). This depen-
dence relation is important for understanding how speakers assess the truth-
values of utterances containing semantic terms because it seems that speakers
assess utterances along the chain of semantic dependences in reverse order.

My motivating idea is this: that the meaning of the truth predicate is the
procedure revealed by the patterns of reasoning speakers exhibit in cases like the
simple one I just gave (although the details of the procedure obviously can be-
come more complicated than the simple case shows). When speakers learn how
to use the word ‘true’, they are learning a method for associating truth-values
with utterances which are situated in a hierarchy of semantic dependences. And
the method determines what truth values utterances actually bear (as opposed,
for example, to determining an extension for the word “true” to have in a final
model). Consequently, to say which truth values utterances in UM bear, my
goal is twofold:

(I) to formalize the semantic dependence relation, and

(II) to formalize the method speakers use to assign truth values along chains
of semantic dependences.

Let’s begin with the first task.
Several different specifications of the vague notion of semantic dependence

that can be found in the literature on truth. It is implicit in the notion of
groundedness in Kripke (1975), and is treated more directly in Yablo (1982),
Gaifman (1992), and Maudlin (2004) among others. There is plausibly a ‘family’
of equally legitimate ways of sharpening the informal notion of semantic depen-
dence. Some previous characterizations of semantic dependence, though, will
not work for my particular purposes. I am interested in a relation of semantic
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dependence for instrumental reasons: to model the order in which speakers are
able to assign truth-values to utterances. Accordingly, a first informal gloss on
the relation of semantic dependence that I’m after might be as follows:

An utterance φc semantically depends on an utterance ψc if
speakers require information about the truth-value of ψc to
settle the truth-value of φc.

Some previous characterizations of semantic dependence won’t be able to play
the role glossed above because they are given in broadly syntactic terms (perhaps
with information about the denotations of terms). This can often lead to a
dependence relation which is too permissive. For example, it can force quantified
statements like (1) to depend on far too many other truth-bearers—sometimes
all of them.

(1) Everything Kate said is true.

Some of the problems here can be avoided by the incorporation of generalized
quantifiers, and using information in quantifier restrictors to restrict depen-
dences. But there are more complex cases which make executing this strategy
more difficult than it might first seem. Consider for example (2).

(2) Every true statement of Kate’s yesterday was believed by Tom.

To ascertain the truth of an utterance of (2) what information do speakers need
to have? Information about everything Kate said? Not always. The answer
seems to depends on how much of what Kate said is true, perhaps along with
other facts. Consider a scenario in which we are able to ascertain that there
is at least one truth Kate spoke—that Tom is unreliable—which Tom does not
believe. It seems like at this point we know enough in this scenario to fix the
value of an utterance of (2): it is false. This means that in this scenario relative
to the information about which utterances are true, we need fix no more truth-
values of utterances to settle the status of (2).

A lesson I think we should take from examples like (2) is that a semantic
dependence relation defined for my purposes should be dynamic: what a given
dependence relation looks like should depend on what truth-values speakers have
already assigned using prior dependence relations. This means there should be
a two-way interaction between relations of semantic dependence and allotments
of truth-values. Dependence relations help fix the order in which speakers allot
truth-values, but as more truth-values are allotted, dependence relations may
shift in response to the new information given by the allotments. A notable
discussion of semantic dependence which gives the resources to skirt worries like
those given above is found in Leitgeb (2005). Readers of Leitgeb will recognize
that the techniques he employs are very similar to those I will shortly adopt.

Before getting into the formal details, a quick philosophical point is in order.
I want to stress that the meaning of the word “true” is exhausted by the pro-
cedure of allotting truth-values along the hierarchies of semantic dependences.
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Thus, even though the procedure I characterize will ultimately deliver a set of
truths, this set is not the meaning of the word, for example as its extension.
Though this is an important point of departure from, say, Kripke (1975) and
many of those building on his system, this idea too is not completely novel.
Gupta & Belnap (1993) have also defended the view that the truth predicate
is associated with a rule-of-revision. My application of the idea that the mean-
ing of the truth predicate is a procedure is, as will become clear, significantly
different from Gupta and Belnap’s. Philosophically, my proposal is much more
similar in spirit to that of Gaifman (1992, 2000), who likewise characterizes
allotments of truth-values along a dependence relation. At a formal level, my
proposal differs from Gaifman’s primarily in my use of a more sophisticated se-
mantic dependence relation. This difference is not incidental: the complications
arising from such a dependence relation are required, I believe, to make sense
of semantic generalities, and those complications raise a special problem that
does not arise when the semantic dependence relation is simplified. It is these
complications that will require us to produce a special coherence result in §4.8

With this preamble out of the way, let me now begin to get some of the
technical machinery I’ll be using on the table. Recall that our task is to say
how to take an allotment of truth-values to utterances of UM given by the base
model M and exhibit the procedure speakers use in allotting truth-values to
utterances containing the semantic terms T and U . To help understand my
formalism, it might be useful to think of it as representing the stepwise progress
of an individual, idealized reasoner in following this procedure. The idealized
reasoner has all information about the non-semantic facts (given by M) and
will gradually reason to the truth values that various utterances in UM have
stepwise.

A important notion in this process is that of a truth-value assignment.

Definition 2.2. A truth-value assignment is a partial function A : MM →
{t, f, u}.

A truth-value assignment can be thought of as a partial allotment of truth values
to the elements of the universe ofM and, therewith, to UM.9 It plays three roles
in the ensuing formalism. First, certain truth-value assignments can be used
represent the provisional progress our ideal reasoner has made in allotting truth
values to utterances in UM. Second, a particular total truth-value assignment—
the culmination of the partial ones just alluded to—will represent the total
distribution of truth values among the utterances of UM. And our original goal
can be rethought of in these terms: characterizing the latter ‘master’ truth-value

8Gaifman does briefly consider the use of certain kinds of supervaluations in his system
(like those which factor into my dependence relation), but not those constrained in the ways
I will suggest on p.12. It is these special constraints on supervaluations which both give my
system its special capacity to state semantic generalities, and require of it the coherence result
I mention here.

9Is it really acceptable to think of non-linguistic entities as bearers of any truth value—
even my third defective value u, as the truth-value assignments I consider will do? Probably
not, but accommodating this point requires a needless complication of the formalism.
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assignment and its properties. This master assignment will be a total extension
of an initial assignment gleaned from the base model M in the following sense.

Definition 2.3. A total extension of a truth-value assignment assignment A
(sometimes just ‘an extension’) is a truth-value assignment A′ such that A ⊆ A′
and A′ is total.

So truth-value assignments represent the partial, and final stages of the pro-
cedure our ideal reasoner executes. But in this section, truth-value assignments
will play a different, third role. They will be used to help characterize a notion
of semantic dependence—the relation that determines the order in which our
ideal reasoner proceeds in allotting truth values. The way assignments do this is
by also acting as hypothetical allotments of truth-values. Permutations of such
hypothetical allotments can give us information about semantic dependences,
an idea again familiar from Leitgeb (2005).

To see how this works, consider the influence the semantic dependences of
an utterance of a sentence like (1) have on its truth-value.

(1) Everything Kate said is true.

If we suppose that Kate said at least one falsehood, (1) comes out false. If
we suppose instead that Kate speaks nothing but the truth, (1) will be true.
But suppose we hold the truth-values of Kate’s utterances fixed and consider
suppositional distributions of truth-values among other utterances. Then of
course (1)’s truth-value will stay constant under those permutations. These
simple reflections afford us an intuitive way of homing in on an utterance’s
semantic dependences. The semantic dependences of an utterance φc are those
utterances whose truth-values ‘influence’ the truth-value of φc where the notion
of ‘influence’ can be brought out counterfactually: changes among only the
truth-values borne by the influencing utterances can alter the truth-value of the
utterance influenced.

It is important to distinguish two ways that utterances can relate to truth-
values in this process of hypothetical reasoning. On the one hand an utterance
can bear a truth-value, by hypothetical stipulation. On the other hand, that
utterance can ‘evaluate to’ a truth-value based on the truth-value distribution
hypothesized. Certain utterances which self-ascribe semantic properties may
evaluate to truth-values different than those they bear on hypothetical stipula-
tion. The liar is characteristic in this regard.

(L) This very utterance is false.

If we suppose an utterance λc of (L) bears the value of truth, it will evaluate
to falsehood. If we suppose it bears the value of being false, it will evaluate to
truth. Liars exhibit the importance of distinguishing borne and evaluated truth-
values in ascertaining a semantic dependence relation. We want to represent
the liar utterances as semantically dependent on themselves. But this kind of
semantic self-dependence would not be possible to ascertain, on the procedure I
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am outlining, if truth-values borne by utterances aren’t distinguished from the
truth-values to which those utterances evaluate.

So, roughly, the first step in determining the semantic dependences of an
utterance φc is as follows: Permute the values borne by utterances in UM. If
permuting the values borne by only some particular set of utterances results in
a change in evaluation of φc, then we know the truth-value of φc may be ‘influ-
enced’ by those utterances. It should be clear how truth-value assignments are
helpful in formalizing this idea. Truth-value assignments can represent the hy-
pothetical allotments of borne truth-values. Moreover, a truth-value assignment
also contains the information relevant to evaluating utterances as well, since a
truth-value assignment implicitly contains the means for interpreting the unin-
terpreted semantic vocabulary T and U in M. Here is one way of ‘reading off’
a complete model from M and a truth-value assignment A.

Definition 2.4. The model engendered (for M) by a total truth-value assign-
ment A, MA, is that given by the extending the interpretation function of M
with

(i) TMA
t = {x : A(x) = t}

(ii) TMA

f = {x : A(x) 6= t}

(iii) UMA
t = {x : A(x) = u}

(iv) UMA

f = {x : A(x) 6= u}

Clauses (ii) and (iv) present one option for how to construe the utterances
to which T and U truth-evaluably apply. These conditions can plausibly be
altered in various ways—for example by setting TMA

f = {x : A(x) = f}. I have
nothing against alternative proposals, and I’ll have occasion to briefly discuss
the importance of my particular choices in §5.

Now, the complete model engendered by an assignment itself implicitly gen-
erates another total truth-value assignment of its own.

Definition 2.5. The truth-value assignment read off of a model M, noted AM
is given as follows

AM(o) =


t if 〚o〛M = t

f if 〚o〛M = f

u if 〚o〛M = u or o /∈ UM
undefined if o ∈ UM and 〚o〛M is undefined

This gives us the formal tools needed to distinguish between borne and evaluated
truth-values on a hypothetical allotment. A hypothetical set of borne truth-
values can be represented by a stipulated truth-value assignment A. And the
truth-values to which utterances evaluate on that hypothetical distribution are
given by the truth-value assignment read off the engendered model, i.e., AMA

.
As I mentioned before, it is not always the case that AMA

= A. The presence
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of liar utterances will ensure equality does not hold. For example, if A(λc) = t
then AMA

(λc) = f .
When we look at hypothetical distributions of truth-values borne by utter-

ances to ascertain semantic dependences, we have a choice as to how permissive
we will be in the kinds of distributions we observe. Obviously, some distributions
of truth-values are ones which could never obtain—for example, those which
simply ignore all compositional relations between the truth-values of utterances
and the truth-values of their uttered parts. We will want the truth-value distri-
butions which we permute in determining semantic dependences at least to be
‘well-behaved’ with respect to logical vocabulary and the behavior of the predi-
cates T and U . The choice has ‘downstream’ implications for how truth-values
are allotted: Which distributions we permute will affect what our semantic
dependence relations ultimately look like. Since the semantic dependence re-
lations give the paths along which truth-values are allotted, any effects on the
semantic dependence relations will in turn affect which truth-values utterances
bear. As we will soon see, constraining the range of truth-value distributions
relevant to the determination of semantic dependences is integral to capturing
semantic generalities—true claims about the total distribution of truth-values
that utterances actually bear.

As a first step in this direction, I’ll be focusing on what I’ll call ‘coherent’
truth-value assignments, which capture some broad features of any reasonable
truth-value distribution (given our assumption of a weak Kleene scheme).

Definition 2.6. A truth-value assignment A is coherent if it meets the following
conditions for utterances in its domain.

(i) If φc = (¬ψc′)c, then A(φc) = t iff A(ψc′) = f , and A(φc) = f iff
A(ψc′) = t.

(ii) If φc = (ψc′ ∧ θc′′)c, then A(φc) = t iff A(ψc′) = A(θc′′) = t, and
A(φc) = f iff either A(ψc′) = f and A(θc′′) ∈ {t, f} or A(ψc′) ∈ {t, f}
and A(θc′′) = f .

(iii) If φc = (Tpψc′q)c and A(φc) ∈ {t, f}, then A(φc) = t iff A(ψc′) = t.

(iv) If φc = (Upψc′q)c and A(φc) ∈ {t, f}, then A(φc) = t iff A(ψc′) = u.

(v) If A(φc), A(φc′) ∈ {t, f}, then A(φc) = A(φc′)

The first two conditions state that the truth-value assignment function respects
the behavior of negation and conjunction. Conditions (iii) and (iv) state that the
truth-value assignment commutes with T and U allowing for the kind of token
sensitivity required of the proposed resolution of the two-line paradox. Recall
that this allows that token ascriptions of the same type may diverge in truth-
value. Moreover, on the proposal, some versions of the ‘strengthened liar’ come
out defective, and hence truth-valueless. Condition (v) is the only condition
that relates tokens of the same type. It states that no two non-defective tokens
of the same type can receive different truth-value assignments. This condition
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is reasonable since base models exhibit no token-sensitivity. Consequently, the
only cases of token-sensitivity which arise in the subsequent system should owe
in part to some instance of semantic defect arising from paradox, or circularity
more generally.

The absence of conditions on the quantifiers is due to the absence of a sat-
isfaction predicate in the object language and a truth-value assignment which
additionally ranged over sub-sentential utterances and variable assignment pairs.
Adding these would increasingly complicate the formalism. The present system
should, however, give a suitable indication of how the satisfaction predicate and
the conditions on quantifiers might be added. I’ll discuss these issues further in
§6.

So, to home in on the semantic dependence relation, one restriction on the
kinds of assignments we permute will be that we only look at coherent assign-
ments in the above sense. But there is a further restriction to enforce in keeping
with our guiding metaphor of the allotment of truth-values as one done by a
hypothetical reasoner proceeding in stepwise fashion. At any given moment,
such a reasoner may have already fixed the truth-values of a substantial set of
utterances, and the reasoner will have no reason to think those truth-values
could change. So when this reasoner looks for the semantic dependences of
new utterances, it stands to reason that they should only look at new potential
truth-value assignments which extend the partial assignment they have made
so far.

So a first step in learning the semantic dependences of an utterance rela-
tive to a partial allotment of truth-values is to permute coherent truth-value
assignments extending that partial allotment. This will tell us which utterances
‘influence’ the truth-value of the utterance we are considering. Here is a pair of
definitions which, together, formalize the relevant notion of influence.

Definition 2.7. Let Γ ⊆ MM, φc be an utterance in UM, and A be a truth-
value assignment. We say Γ matters to φc relative to A just in case there are
two total coherent truth-value assignments A1 and A2 extending A, such that

(i) A1(γ) 6= A2(γ) if and only if γ ∈ Γ.

(ii) AMA1
(φc) 6= AMA2

(φc).

Definition 2.8. Γ really matters to φc relative to A if there are two total
coherent extensions A1 and A2 which both witness the fact that Γ matters to
φ and are such that there are no assignments A′1, A′2 and ∅ 6= Γ′ ⊆ Γ meeting
these conditions:

(i) A1 � (M − Γ) = A′1 � (M − Γ) = A2 � (M − Γ) = A′2 � (M − Γ)

(ii) A′1 � (Γ′) = A′2 � (Γ′)

(iii) AMA′1
(φc) 6= AMA′2

(φc).
10

10Compare mattering and really mattering with the notions of dependence and essential
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Intuitively, a set of utterances Γ matters to φc if one can permute the borne
values of all and only the utterances in Γ to alter the evaluated truth-value of φc.
Γ really matters to φc when some permuted assignments that show Γ matters
to φc don’t contain ‘extraneous’ elements (elements in a non-empty Γ′ which
could be held constant and still result in a change in value to φc). When looking
for the utterances which can ‘influence’ the evaluated value of an utterance φc,
it is important to consider only utterances which really matter to φc, since by
definition any superset of a set Γ of utterances that matter to φc will also matter
to φc.

We can use this formalized notion of influence as the backbone of a semantic
dependence relation. Simply identifying the semantic dependences of φc with
the utterances that really matter to it, though, isn’t well suited to my purposes
for a number of reasons. First, making that identification doesn’t ensure that
when one utterance, φc, semantically depends on ψc′ , that utterances with φc
as a constituent also semantically depend on ψc′ . Second, it does not ensure
that an unassigned utterance of the form Tpφcqc′ or Upφcqc′ depends on φc,
since the conditions on coherence may cause these utterances to covary in their
truth-values.11 I’ll need the semantic dependence relation to exhibit those de-
pendences, if only to simplify upcoming proofs. Finally, the definition of really
mattering has a bug: sometimes many sets of utterances can matter to φc, but
no sets of utterances really matter to it. These problem cases merit a special
name.

Definition 2.9. An utterance φc has unspecifiable dependences relative to A if
some Γ matters to φc relative to A but no Γ′ really matters to φc relative to A.

I’ll give an example of a φc of this kind shortly. What’s important for now is
that the semantic dependences of an utterance will be those that really matter

dependence defined in Leitgeb (2005). There are some superficial differences between the
definitions. For example, Leitgeb defines dependence for sentences, as opposed to utterances.
But there are also a few more noteworthy differences. For Leitgeb, when φ depends on Γ,
any change in the evaluated truth-value of φ must be traceable only to sentences in Γ. By
contrast, when Γ matters to φc it may yet be possible to find ways of changing the evaluated
truth-value of φc by permuting the borne values of utterances outside Γ. This leads to further
differences. For Leitgeb, the set of essential dependences of φ, if it exists, is unique. But
several sets of utterances may really matter to a given utterance φc. For example, if φc is of
the form (Tpψc′q∨Tpθc′′q)c, then as will become clearer shortly, it is entirely possible that two
sets {ψc′} and {θc′′} really matter to φc. Also my definition of really mattering is somewhat
more complex than Leitgeb’s definition of essential dependence. The added complexity leads
to a more permissive relation, which will be necessary to prove Proposition 2.1. One source
of these differences is that my techniques for tracking dependence relations were originally
developed independently of Leitgeb’s work and for slightly different reasons. Each relation has
its advantages. Leitgeb’s relations have some regular mathematical properties. For example,
the sets of dependences of φ in Leitgeb’s sense form a filter, though the example just given
shows that the sets of utterances that matter to an utterance φc need not. My relations
make it slightly more difficult for certain anomalies to appear—what I call utterances with
unspecifiable dependences on p.14. At bottom, though, the relations are very similar in spirit
and structure, and are helpfully thought of as such.

11Let u1 = φc, u2 = Tpφcq, u3 = TpTpφcqq, and let A(φc) = u but be undefined elsewhere.
Then u2 ‘should’ matter to u3 (for my purposes), but it doesn’t. Any coherent extension of
A can’t assign t to u2. This means on every such assignment u3 evaluates to false.
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to it, with some added clauses to account for these three problem cases: direct
ascriptions of semantic properties, unspecifiable dependences, and inheritance
of semantic dependences by logically complex constructions.

Definition 2.10. ψc′ is a semantic dependence of an utterance φc relative to a
truth-value assignment A if

(i) ψc′ is in some Γ that really matters to φc relative to A,

(ii) φc = Spψc′q for some semantic predicate S, and ψc′ /∈ dom(A),

(iii) ψc′ /∈dom(A) and φc has unspecifiable dependences relative to A, or

(iv) φc has a constituent utterance meeting conditions (i), (ii), or (iii) with
respect to ψc′ .

The set of semantic dependences of φc relative to a truth-value assignment A is
noted SDA(φc).

12

Note that clause (iii) ensures that if φc has unspecifiable dependences relative
to A, it is semantically dependent on every unassigned utterance.

The resulting definition of semantic dependence has two related features: it
is relative and has a kind of epistemic character. It is relative in the sense that
which semantic dependences an utterance has depends on which other utter-
ances have had their truth-values fixed. It is epistemic in the sense that the
semantic dependences of an utterance φc are not just the (unassigned) utter-
ances that φc ascribes semantic properties to. Rather, to improve on our earlier
informal characterization of semantic dependence

The semantic dependences of an utterance φc relative to A are
those utterances whose truth-values a reasoner, who already
knows only the truth-values of the utterances in dom(A), might
still have to figure out in order to determine the truth-value of
φc.

Both features of the definition—its relativity and its epistemic character—are
best brought out by looking at a few, somewhat idealized examples, focusing
on how semantic dependences are generated in the ‘standard case’ by the rela-
tion of really mattering. The examples are idealized because I’ll provisionally
be assuming the availability of certain kinds of coherent extensions, like the
following.

Definition 2.11. A truth-value assignment A allows arbitrary permutations
over a set Γ if A has coherent extensions, and for any coherent extension A′

of A, we can find other coherent extensions identical with A′ over M − Γ, and
arbitrarily permuting the truth values assigned over Γ.

12A main motivation for accommodating condition (ii) is that the stipulation will assist in
upcoming proofs in §5. I’m not actually sure if the condition is required to ensure those proofs
go through. Also, a more complete treatment of semantic dependence to model the intricacies
of natural language use of semantic terms would have to be weakened through the accommo-
dation what I have elsewhere called ‘defaulting’ conditions. See Shaw (forthcomingb).
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I’ll say a little bit more about the availability of such extensions shortly.

Example 2.1. φc is (∃v1 : θ(v1))(T (v1))c, and ψc′ is (∃v1 : θ(v1))(¬T (v1))c′

where θ is a formula without semantic vocabulary which, inM, defines a set of
utterances U1. Consider three cases:

(a) Let A be undefined on U1, and allow arbitrary permutations over U1.
Then SD(φc) = SD(ψc′) = U1. To see this, consider coherent exten-
sions A1 and A2 of A which map every utterance in U1 to f except for
one u1 ∈ U1 such that A1(u1) = t and A2(u1) = f . Let A1 and A2

be identical elsewhere. Then AMA1
(φc) = t 6= AMA2

(φc) = f , showing
that {u1} matters to φc relative to A. Any singleton that matters to an
utterance relative to a truth-value assignment also really matters to it
by definition. So u1 ∈ SDA(φc). But there was nothing special about
u1—we could show the same for any utterance in U1. And, given the
available extensions of A, no other utterances besides those in U1 really
matter to φc. Any set of utterances Γ that matters to φc must contain
some element of U1, revealing that if Γ is not a singleton from U1, it
does not really matter to φc. So the set of utterances that really matter
to φc relative to A are those in U1, hence SDA(φc) = U1. Analogous
reasoning gives the same semantic dependences to ψc′ .

(b) Let A be such that A(u1) = t for some u1 ∈ U1 but is elsewhere
undefined on U1, and A allows arbitrary permutations over U1 − {u1}.
Then SD(φc) = ∅ and SD(ψc′) = U1 − {u1}. SD(φc) = ∅ since every
total coherent extension A′ of A will be such that A′(u1) = t, which
will ensure that AMA′ (φc) = t. So no utterances matter to φc relative
to A. On the other hand, permuting the values of U1 − {u1} will alter
the evaluated truth-value of ψc′ just as in the previous example.

(c) Let A be such that A(u1) = f for some u1 ∈ U1 but is elsewhere
undefined on U1, and A allows arbitrary permutations over U1 − {u1}.
Then SD(φc) = U1 − {u1} and SD(ψc) = ∅. The case is symmetric
with (b).

This example brings out both of the features I claimed were characteris-
tic of my semantic dependence relations. The relations are relative, as can be
seen from the fact that the semantic dependences of φc and ψc′ relative to A
change depending on how many truth-values have been fixed in A. Moreover,
the uniquely epistemic character of the semantic dependence relations comes
out when contrasting cases (b) and (c) above. If we think of semantic depen-
dence in terms of which utterances are ascribed truth-values, then we would
expect the dependences of φc and ψc′ to always be identical. But if we think
of the dependences of an utterance as further utterances whose truth-values
must yet be discovered to assess the original utterance for a truth-value, the
dependences of φc and ψc′ can differ from each other dramatically, even relative
to the same assignment. This is because sometimes learning the truth-value of
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one utterance in U1 will be enough to settle the truth-value of one of φc and
ψc′ but not the other. And as long as we can’t ascertain the truth-value one of
those utterances—φc say—we may potentially need information about all the
unassigned utterances in U1. This is nicely reflected in the determination of
semantic dependences above.

The shifting character of the semantic dependence relation also affords us
insight into the semantic dependences of utterances whose quantifiers are re-
stricted using semantic terms, like our example (2) from before.

(2) Every true statement of Kate’s yesterday was believed by Tom.

Example 2.2. φc is (∀v1 : T (v1) ∧ θ(v1))(δ(v1))c, where θ and δ are formulas
of one free variable without semantic vocabulary which, in M, define a set of
utterances U1 and U2. Let Ū2 be the set of utterances defined by ¬δ(v). Again,
consider three cases:

(a) Let A be undefined on U1 ∩ Ū2 and allow arbitrary permutations over
U1 ∩ Ū2. Then SDA(φc) = U1 ∩ Ū2. Pick some u1 ∈ U1 ∩ Ū2, and
pick an extension A1 of A such that A1(ui) = f for all ui ∈ U1 ∩ Ū2,
and another extension A2 differing from A1 only in that A2(u1) = t.
Then AMA1

(φc) = t 6= AMA2
(φc) = f , showing that {u1} matters to

φc relative to A, hence it also really matters to φc relative to A. Again,
since u1 was arbitrary, any ui ∈ U1∩ Ū2 is such that {ui} really matters
to φc relative to A. It should be clear that no set of utterances not
containing an element from U1 ∩ Ū2 will matter to φc. So, again given
the available extensions of A, singletons among U1∩Ū2 are the only ones
that really matter to φc relative to A, and hence SDA(φc) = U1 ∩ Ū2.

Note that this means if U1 ∩ Ū2 = ∅ then SDA(φc) = ∅. This is in
keeping with my gloss on the semantic dependence relation. If nothing
Kate said yesterday was not believed by Tom, then one needs no further
information about truth-value distributions to ascertain the truth-value
of an utterance of (2) above.

(b) Let A be such that A(u2) = f for some u2 ∈ U1 ∩ Ū2 and is undefined
elsewhere on U1 ∩ Ū2 and allows arbitrary permutations over that set.
Then, by the same reasoning in (a), SDA(φc) = (U1 ∩ Ū2)− {u1}.

(c) Let A be such that A(u1) = t for some u1 ∈ U1 ∩ Ū2. Then as long
as A has coherent total extensions, SDA(φc) = ∅. This is because for
each total coherent extension A′ of A, AMA′ (φc) = f , so no utterances
really matter to it.

So a quantified statement whose quantifier is restricted by utterances bear-
ing certain truth-values has a complex set of semantic dependences determined
by an interaction between three factors: the interpretation of the non-semantic
vocabulary in the quantifier restrictor, the interpretation of the quantifier ma-
trix, and the progress made in expanding a truth-value assignment. This seems
true to the facts, given my gloss on the semantic dependence relation.
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It is worth noting that it is easy for semantic self-dependence to arise on this
picture, but also that such semantic self-dependence is often not vicious. φc in
example 2.2 can easily semantically depend on itself if it is among U1∩Ū2 relative
to some assignment A. But such self-dependence might present no obstacles to
ascertaining the truth-value of φc because relative to more information—an
expanded assignment function—that self-dependence disappears. This would
occur as soon as the conditions in (c) are satisfied, for example, so that we
can pronounce on the truth-value of φc whether or not it intuitively ascribes a
truth-value to itself.

Vicious self-reference is also not hard to come by.

Example 2.3. Let λc be of the form (¬Tpλcqc′)c, and suppose A is undefined
on λc and Tpλcqc′ with coherent extensions that arbitrarily permute only their
truth-values (consistent with the conditions of coherence on negation). Then
there are two ways to see that SDA(λc) = {λc, Tpλcqc′}. First, take exten-
sions A1 and A2 of A, identical but that A1(λc) = f and A1(Tpλcqc′) = t
on the one hand, and A2(λc) = t and A2(Tpλcqc′) = f on the other. Then
AMA1

(λc) = t 6= AMA2
(λc) = f . So {λc, Tpλcqc′} matters to λc. Note that no

two coherent assignments differ only on their assignment to λc and not Tpλcqc′
as well. So {λc, Tpλcqc′} really matters to λc. No set devoid of λc matters
to λc, so SDA(λc) = {λc, Tpλcqc′}. Another way to show that λc is seman-
tically self-dependent relative to A is simply to appeal to clauses (ii) and (iii)
of the definition of semantic dependence. These conditions, especially (ii), are
a safeguard for when the coherent extensions of A required to show semantic
dependence aren’t around (or, as we’ll see in the proofs to come, when their
existence is tricky to prove).

The previous example shows one simple case where conditions on coherence
may not allow arbitrary permutations of values assigned to utterances. This
means that when the values of utterances must be permuted together, they tend
to either both be in, or out, of the set of an utterance’s semantic dependences
relative to a truth-value assignment.

Note that the earlier point made in example 2.2—that ascription of a truth-
value to oneself needn’t produce semantic self-dependence—is highly relevant
to determining the semantic dependences of semantic generalities. To see this
consider the following utterance.

Example 2.4. Let φc be (∀v1 : v1 = v1)(T (v1) ∨ ¬T (v1)). Then for any A,
SDA(φc) = ∅. This is because for any total coherent assignment A′ whatsoever,
AMA′ (φc) = t.

The supervaluational character of the determination of semantic dependence
ensures that statements whose truth-values are easy to determine from global
distributions of semantic properties will have few, if any, semantic dependences.

The foregoing examples should give give a flavor for the behavior of how
semantic dependences are determined in the standard case: by appeal only to
clause (i) of the definition of semantic dependence and hence to the relation of
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really mattering. Still, a small caveat is in order. I earlier called these cases
‘idealized examples’, and I did so because of the assumptions I made about
the availability of total coherent extensions of certain kinds. Often the range
of extensions that I appealed to will not, or could not, exist in the way I sup-
posed. For example, sometimes the only coherent extensions of an assignment
will have to jointly permute tuples of utterances, owing to the constraints on
coherence. In some special cases, no coherent extensions of an assignment at
all will be available (for example, if we start with a partial truth-value assign-
ment which flouts the coherence constraints). How many, and what kinds of
total coherent extensions a partial truth-value assignment has will obviously be
an important question that we’ll return to later. But hopefully the idealized
examples can serve for now in getting a grip on how semantic dependences are
typically assessed.

The application of clauses (ii) and (iii) of the definition of semantic depen-
dence should be relatively straightforward, so let’s turn to clause (iv) which
deals with utterances with unspecifiable dependences. Here is an example of
such an utterance which, as I noted before, points to a kind of ‘bug’ in the
characterization of influence that really mattering affords.13

Example 2.5. Let D define in M a set of utterances D = {ψci | i ∈ ω}, and
R define in M the relation {〈ψci , ψcj 〉 | i < j}. Let φc be

(∀v : Dv)((∃v′ : Dv′)(Rvv′ ∧ Tv′))

Then, supposing A allows arbitrary permutations over D, many sets of utter-
ances matter to φc including, e.g., D. But no sets of utterances really matter
to φc since for any subset Γ that matters to φc with witnessing A1 and A2, we
can always find suitable A′1 and A′2 which, e.g., additionally hold constant the
elements in Γ′ = {ψci ∈ Γ | i < k} for some k large enough to make Γ′ non-
empty, while still ensuring AMA′1

(φc) 6= AMA′2
(φc). Accordingly, by definition,

SDA(φc) = UM−dom(A).

An utterance φc with unspecifiable dependences relative to A is one which
clearly ‘depends’ for its truth on the semantic properties of other utterances,
but picking out any particular set of utterances as those which could be ‘ulti-
mately responsible’ for its truth-value is unprincipled, since any set that one
picks will always, of necessity, include utterances which can be viewed as extra-
neous. Utterances with unspecifiable dependences require finer adjustments to
the definition of semantic dependence, or perhaps new tools altogether, to cap-
ture the sense in which these utterances depend for their truth on the semantic
properties of other utterances. Since doing this would unduly complicate the
formalism and, by and large, these are relatively outlying cases, I’ll be content
here with my strategy of stipulating these utterances are semantically dependent
on every unassigned utterance.

13The example is adapted from Leitgeb (2005).
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An important general fact about these semantic dependence relations is that
(unspecifiable dependences aside) as truth-value assignments grow, semantic de-
pendences relative to those assignments shrink. In more metaphorical terms:
as our idealized reasoner learns more and more about which truth-values ut-
terances bear, the less and less she will need to know to fix the truth-values of
other utterances.

Proposition 2.1. Let A,A′, be truth-value assignments with A ⊆ A′. Then if
φc and its constituent utterances don’t have unspecifiable dependences relative
to A′, SDA′(φc) ⊆ SDA(φc).

Proof. Suppose ψc′ ∈ SDA′(φc). If the grounds for the inclusion of ψc′ in
SDA′(φc) are condition (ii)—that φc = Spψc′q for some semantic predicate S,
and ψc′ /∈ dom(A′)—then trivially ψc′ ∈ SDA(φc) as well. So suppose instead
the grounds for inclusion are condition (i). Then ψc′ ∈ Γ for some Γ that really
matters to φc relative to A′, and there are total coherent extensions A′1, A

′
2 of

A′, differing only on Γ, such that AMA′1
(φc) 6= AMA′2

(φc). Since A ⊆ A′, A′1
and A′2 extend A, witnessing that Γ matters to φc relative to A. Now, if there
were A′′1 , A′′2 , and ∅ 6= Γ′ ⊆ Γ which showed that Γ doesn’t matter to φc relative
to A, they would equally show Γ doesn’t matter to φc relative to A′—a contra-
diction. So Γ really matters to φc relative to A and ψc′ ∈ SDA(φc). Finally, if
the grounds for the inclusion of ψc′ in SDA′(φc) are that ψc′ has a constituent
utterance γc′′ meeting (i) or (ii), then γc′′ meets (i) or (ii) for ψc′ relative to A
as we have just shown, so again ψc′ ∈ SDA(φc).

Recall that I had two main tasks in giving my semantics based on the idea
that the meaning of the truth-predicate and other semantic terms are given by
a procedure. They were:

(I) to formalize the semantic dependence relation, and

(II) to formalize the method speakers use to assign truth values along chains
of semantic dependences.

The first of these tasks is now accomplished, and the second is not far off. In
the rest of this section, I’d like to develop some formal tools that will help us
with (II).

To begin, we should note that when I said earlier that speakers assign truth-
values ‘along a chain of semantic dependences’, I was ignoring the complica-
tions that arise when utterances directly or indirectly semantically depend on
themselves. The possibility of various kinds of semantic self-dependence and
interdependence poses a slight problem for the idea that the semantic depen-
dence relations provide us with an order in which speakers assign truth-values
to utterances.

But the kinds of knots and tangles that arise in the dependence relations can
be ironed out to create the relevant orderings. Note that a semantic dependence
relation, relative to some truth-value assignment A, creates a directed graph
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among the utterances of UM. And this directed graph can be transformed
into a more revealing partial ordering by creating certain equivalence classes of
utterances as follows.

Definition 2.12. Let A be a truth-value assignment and let SD∗A be the tran-
sitive closure of SDA (considered as a relation). A semantic cluster relative to
A is either:

(1) A set Γ such that
(a) For all φc, ψc′ ∈ Γ, φc ∈ SD∗A(ψc′), and
(b) For all φc ∈ Γ, if there is a ψc′ such that ψc′ ∈ SD∗A(φc) and
φc ∈ SD∗A(ψc′), then ψc′ ∈ Γ; or

(2) A singleton {φc} such that φc /∈ Γ for any Γ satisfying the conditions
of (1).

Each truth-value assignment A yields a semantic dependence relation SDA

which generates a set of semantic clusters that partition UM

Definition 2.13. Let CA = {Γ | Γ is a semantic cluster relative to A}.

Proposition 2.2. For all truth-value assignments A, CA partitions UM.

Proof. Singletons satisfying condition (2) of definition 2.12 clearly do not in-
tersect each other, nor any of the sets satisfying condition (1) by stipulation.
Suppose Γ and Γ′ satisfy condition (1) and φc ∈ Γ ∩ Γ′. Pick any ψc′ ∈ Γ and
θc′′ ∈ Γ′. Then by applications of condition (1a) we have

(i) φc ∈ SD∗A(ψc′) and ψc′ ∈ SD∗A(φc)

(ii) φc ∈ SD∗A(θc′′) and θc′′ ∈ SD∗A(φc).

But then by condition (1b) and the transitivity of SD∗A we have ψc′ ∈ Γ′,
θc′′ ∈ Γ. Since ψc′ and θc′′ were arbitrary members of Γ and Γ′, we have Γ = Γ′.
UM ⊆

⋃
CA since every utterance is in a cluster with properties (1) or (2)

by stipulation.

This legitimates the following definition

Definition 2.14. For truth-value assignment A and utterance φc, we define
ΓA,φc to be the semantic cluster relative to A containing φc.

Now, the partition generated by taking semantic clusters can be partially
ordered with the help of the semantic dependence relation.

Definition 2.15. Let A be a truth-value assignment and CA be the set of
semantic clusters relative to A. Then let ≤A (⊆ CA × CA) be given by

Γ ≤A Θ iff ∃φc ∈ Γ and ∃ψc′ ∈ Θ such that φc ∈ SD∗A(ψc′) or Γ = Θ

Proposition 2.3. For all truth-value assignments A, ≤A partially orders CA
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Proof. Reflexivity follows from the definition, transitivity by the stipulated tran-
sitivity of SD∗A, and antisymmetry by the ‘maximality’ condition (1b) from
Definition 2.12.

This ordering will play an important role in the formalism to ensue. In particu-
lar, a certain type of semantic cluster will be of particular relevance: those that
are, in a sense, ‘up next’ for assignment. These are the clusters which are least
in the ordering.

Definition 2.16. Let A be a truth-value assignment. An utterance φc /∈dom(A)
is A-minimal if

(i) there is no semantic cluster Γ such that Γ <A ΓA,φc , or

(ii) φc has as a component utterance, or is a component utterance of, some
unassigned ψc′ meeting condition (i).

Another important phenomenon that we will want to keep our eyes out for
is sets of utterances whose clusters have no A-minimal element.

Definition 2.17. A set of utterances {φc0 , φc1 , . . . φcn . . .} is a semantic chain
relative to a truth-value assignment A if for φci+1

∈ SD∗A(φci) for all i ∈ ω, and
for all i 6= j, ΓA,φci 6= ΓA,φcj .

Part of the reason to keep track of semantic chains is that they are known to
give rise to paradoxes.14

3 Procedural Evaluation Formalized

We have our relations of semantic dependence in hand, so it is now time to say
how speakers assign truth-values to utterances along the orderings of semantic
clusters they generate. Fortunately the work here is largely already done, since
the definition of semantic dependence implicitly contains information about how
this assignment is to proceed.

To see this, consider our idealized reasoner, who has progressed in allot-
ting truth-values to utterances according to some truth-value assignment A.
Those utterances which have no semantic dependences relative to that A have
an important property: they evaluate to a single truth-value across the range
of supervaluations that are used to ascertain semantic dependence. Recall our
gloss on the semantic dependence relation: given a known partial allotment of
truth-values to utterances, it is the relation which tells us which utterances’
truth-values one might still need to fix in order to fix the truth-value of an
utterance under consideration. And the way this relation was determined was
by showing which utterances could influence the evaluated truth-value of a con-
sidered utterance by permuting them. So when an utterance has no semantic

14Yablo (1993).
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dependences no utterances matter to it and it is ‘ready to be assigned’. More-
over, it has a stable evaluated truth-value privileged by the procedure which
determines it is ready to be assigned.

For any assignment A, we can group together the unassigned utterances
ready to be assigned in this way according to the truth-values they should be
allotted.

Definition 3.1. Let A be a truth-value assignment, φc be an utterance. We
say

φc is stably true on A if for all total coherent extensions A′ of A,
AMA′ (φc) = t,

φc is stably false on A if for all total coherent extensions A′ of A,
AMA′ (φc) = f , and

φc is stably defective on A if for all total coherent extensions A′ of A,
AMA′ (φc) = u.

We define

t[A] = {φc ∈ UM | φc /∈ dom(A) is stably true on A,SDA(φc) = ∅}

f [A] = {φc ∈ UM | φc /∈ dom(A) is stably false on A,SDA(φc) = ∅}

u[A] = {φc ∈ UM | φc /∈ dom(A) is stably defective on A,SDA(φc) =
∅}

So t[A] represents those utterances that a reasoner who has arrived at the as-
signment A should add to that assignment as true. The reason for adding the
condition that a SDA(φc) = ∅ is to accommodate the additional conditions (ii)
and (iv) on the semantic dependence relation: sometimes an utterance may
be stably true, though it intuitively must ‘wait’ to be assigned because it has
dependences secured by those added clauses.

I’ll call the process by which our idealized reasoner expands their truth-
value assignment with stable utterances boosting. As a reasoner progressively
boosts to include relevant stable utterances, they approach a limit point before
a number of steps determined as a function of |UM|. Supposing for now that
|UM| ≤ ω, we know that the process of adding stable utterances will termi-
nate before ω1 iterations. But of course, at this stage, for many reasonable
sets of utterances, the truth-value assignment function arrived at will still be
partial. Many utterances left over will be utterances that are semantically self-
dependent, or elements of semantic chains.

A central idea motivating the present formalism is that when the semantic
value of a word does not unambiguously determine a truth-value for a particular
utterance, then that utterance is defective in the sense marked off by the value
u in the formalism. Certain utterances unassigned after boosting is exhausted
are ‘hopeless’ in this sense: not only have they not yet been assigned a value
in the procedural assignment but if they were ever to be so assigned, they
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would have been by now. These are the A-minimal utterances defined before,
those least in the order of semantic clusters. These are groups of semantically
interdependent and self-dependent utterances which depend on nothing further.
So if any utterances deserve to be counted as defective, on the motivations
alluded to, it is these.

This provides another method for assignment function expansion: taking
an assignment function stable under boosting, and relegating the assignment-
minimal utterances to those that are defective. I’ll call this part of the pro-
cedural assignment culling.15 It is important to cull only assignment minimal
utterances, since as soon as this is done, other utterances that are less hopelessly
situated in the hierarchy of semantic dependences open up again for normal as-
signment. Consider again the proposed treatment of our variant of the two-line
paradox:

Jones at t: “What Jones utters at t is false or defective.”

Jane at t1: “What Jones utters at t is false or defective.”

A model including the utterances of Jones and Jane would treat Jones’ utterance
as semantically self-dependent, and Jane’s utterance as semantically dependent
on just Jones’ utterance (and perhaps its constituents). Thus Jones’ utterance
would never be assigned through the initial boosting process, nor would Jane’s.
At the end of the boosting process, Jones’ utterance would be culled, but Jane’s
would not. This means if we begin boosting immediately after culling, utter-
ances like Jane’s, and those semantically dependent on Jane’s utterance, are
free to be boosted to truth or falsity as we like, in keeping with the kind of
resolution to the two-line paradox that I endorsed earlier.

The process of alternating boosting until boosting is exhausted, then culling,
then boosting again to exhaustion, and so on, is a process that can itself be
iterated to exhaustion. Again, assuming |UM| ≤ ω, ω1 steps will suffice. At
this point, if any utterances remain unassigned, I propose that they be relegated
to be defective as well. I’ll say a little more about these final utterances shortly.
I’ll call the process by which these final utterances are assigned u, the discarding
stage. At this point, all utterances in UM have been procedurally assigned
truth-values, in keeping with our goal (II) from above.

So to recaptulate: the process of assigning truth-values that I am proposing
alternates boosting to exhaustion, and culling, until iterations of that pair of
operations is itself exhausted. Any remaining utterances are discarded. The
following definition formalizes this process. Subscripts up to ω1 index boosting
operations, and superscripts index culling operations. We start the process off
with the partial assignment engendered by the base model M—that is AM.

Definition 3.2. The semantic extension of M, writtenM∗ is the set of ordered
pairs given as follows:

15Compare the Closed Loop Rule of Gaifman (1992, 2000).
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A0
0 = AM

Aβα+1 = Aβα ∪ {〈φc, t〉 | φc ∈ t[Aβα]}
∪ {〈φc, f〉 | φc ∈ f [Aβα]}
∪ {〈φc, u〉 | φc ∈ u[Aβα]}
for α < ω1

Aβλ =
⋃
η<λA

β
η for limit ordinals λ

Aβ+1
0 = Aβω1

∪ {〈φc, u〉 | φ is Aβω1
-minimal}

Aλ0 =
⋃
η<λA

η
0 for limit ordinals λ

M∗ = A0
ω1+1 = Aω1

0 ∪ {〈φc, u〉 | 〈φc, v〉 /∈ Aw1
0 for any v}

Note that by construction Aβα ⊆ Aβ
′

α′ for 〈β, α〉 < 〈β′, α′〉 (on the lexico-
graphic ordering). I abuse a bit of notation by labeling our master assignment
M∗. M∗ after all, is not a model in the traditional sense but only a set of
ordered pairs. But it is designed to behave like one in a crucial respect: it
partitions utterances according to their truth-value assignment.

I have already given loose justifications for the behavior of the boosting and
culling operations, but what of the discarding operation? For example, what
kinds of utterances are discarded? It turns out only utterances that are included
in special kinds of semantic chains are assigned at this final stage.16

Proposition 3.1. Provided Aw1
0 is a truth-value assignment, if φc0 /∈ dom(Aw1

0 ),
then φc is in a semantic chain relative to Aw1

0 .

Proof. Let φc0 /∈ dom(Aw1
0 ) and consider the semantic cluster ΓAω1

0 ,φc0
. There

must be a Γ < ΓAω1
0 ,φc0

, otherwise φc0 would be Aω1
0 -minimal and, if culled,

would expand Aω1
0 . However, Aω1

0 is stable under the operation of culling by
construction. Since there is a Γ < ΓAω1

0 ,φc0
, we can pick some φc1 ∈ Γ. We know

that φc1 /∈ dom(Aw1
0 ) (since semantic dependences relative to an assignment are

always unassigned by definition). So by similar considerations, we can show that
there is a Γ < ΓAω1

0 ,φc1
. In this way we can generate a series {φc, φc1 , . . . φcn . . .}.

By construction φci+1
∈ SD∗A(φci) for all i ∈ ω, and ΓAω1

0 ,φci
6= ΓAω1

0 ,φcj
for

i 6= j.

It is important to note that not all utterances in semantic chains are ‘hopeless’.
In fact many utterances in semantic chains may get assigned truth-values at
boosting stages in the process of assignments. This is because what are initially
semantic chains relative to one assignment, may cease to be with respect to
another, expanded assignment. But the semantic chains left over after boosting
and culling stages are exhausted are as hopeless as can be. They are parts of
infinite descending chains of semantic dependences, with no indication as to

16Thus, compare my discarding rule to the Groundless Pointer Rule of Gaifman (2000).
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‘where to begin’ in assigning them truth-values. These are the utterances which
are discarded.17

This concludes the second and final stage of my proposal: to formalize the
method used to assign truth values along chains of semantic dependences.

4 Coherence and Harmony

It remains to explore the formal consequences of adopting this conception of
the semantic value of semantic terms like “true”. A first step in this process
is to show that the construction avoids a special problem—a problem which
arises uniquely for my system because of two features it has. First, the final
system consists merely in a pairing of utterances with truth-values, where those
truth-values are not paired through the familiar kind of compositional process
that occurs in standard models (whether bivalent or trivalent). Second, the
system makes those pairings roughly via a series of supervaluations over a class
of ‘well-behaved’ assignments—assignments which exhibit some salient struc-
ture that standard compositional models would have. These were the coherent
assignments.18

The special problem that arises for my system is that it is imperative to show
that, at every stage of the pairing process, we have an assignment with total
coherent extensions. If not, then the conditions on being stably true, false, and
defective, will all be trivially satisfied by virtually every utterance at that stage,
and as a consequence virtually every unassigned utterance will be associated
with all three truth values. So we cannot yet be sure that M∗ is a truth-value
assignment: it might not be a function if the right kinds of coherent truth-value
assignments do not exist.

The goal of this section is to show that this unfortunate outcome doesn’t
arise. This has another important beneficial consequence: if every assignment
has coherent extensions, then the master assignmentM∗ is itself coherent. Thus
there is a kind of ‘harmony’ that exists between the supervaluational techniques
employed in boosting and the end result of assigning truth-values to utterances
using those techniques. In particular, any utterance which is assigned t or
f , is so assigned by a supervaluation over a class of truth-value distributions
including the distribution which is the end product of such assignments. This
kind of harmony in my proposed system is fairly straightforward consequence
of the structure of the assignment process, but it will take a little work to show
this.

How can we show that every assignment in the process of determining M∗
has coherent extensions? Naturally by finding a ‘standard way’ of generating a
total coherent truth-value assignment form a partial one that is already known

17This importantly means my rules can’t be applied in an ‘order independent’ way—a
distinction between my procedural assignment and that of Gaifman.

18The first feature marks an important distinction from Kripke (1975) and a large class of
philosophers building on his system. The second feature distinguishes my proposal from the
only other token-sensitive view I am aware of, namely Gaifman (1992, 2000).
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to be coherent. I’ll begin by characterizing this notion of a standard coher-
ent extension, and then show how every partial assignment generated by the
procedure can be extended in that standard way.

First, some perfunctory definitions.

Definition 4.1. t, f, and u are truth values.

Definition 4.2. A truth-value assignment A is coherently extensible, if A has
some total coherent extension.

My method for generating a total coherent assignment from a partial assignment
that is coherent is given as follows.

Proposition 4.1. The weak extension of a truth-value assignment A is

A ∪ {〈φc, u〉 | 〈φc, v〉 /∈ A for any v}

The weak extension of a coherent assignment has good potential to be coher-
ent itself, since coherence puts relatively few conditions on defective utterances.
Coherence of the partial assignment, however, isn’t enough to secure the co-
herence of its weak extension. We need the following additional constraint on
assignments to special utterances using semantic vocabulary.

Definition 4.3. A truth-value assignment A is weakly extensible if A is coherent
and if whenever (Spφc′q)c ∈ dom(A) for a semantic predicate S, φc′ ∈ dom(A)
as well.

Proposition 4.2. If A is weakly extensible its weak extension is coherent, hence
A is coherently extensible.

Proof. Conditions (i), (ii), and (v) of Definition 2.6 are easily verified since the
weak extension only adds pairs of the form 〈φc, u〉. Conditions (iii) and (iv) are
secured by the added constaint on weak extensibility.

My goal now is to show that Aβα is weakly extensible for all α and β. To
do this, I will need a short series of ancillary results that will make use of the
following natural notion of utterance rank.

Definition 4.4. The rank of an utterance φc, rank(φc), is the pair 〈β, α〉 such
that 〈φc, v〉 ∈ Aβα for some v, but for all 〈β′, α′〉 < 〈β, α〉 (where < is the

lexicographic ordering), 〈φc, v〉 /∈ Aβ
′

α′ for any v. We say that 〈β, α〉 is

(i) ...the initial stage if α = β = 0.

(ii) ...a boosting stage if α < ω1 is a successor ordinal .

(iii) ...a culling stage if α = 0 and β is a successor ordinal.

(iv) ...a collecting stage if α or β are limit ordinals.

(v) ...a discarding stage if α = ω1 + 1, β = 0.
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A first ancillary claim is that utterances assigned in the initial or boost-
ing stages evaluate to the same truth-value they are assigned on all coherent
extensions.

Proposition 4.3. Suppose rank(φc) = 〈β, α〉 is the initial stage or a boosting
stage and 〈φc, v〉 ∈ Aβα. Then for all 〈β′, α′〉 ≥ 〈β, α〉, and for all total coherent

extensions A′ of Aβ
′

α′ , AMA′ (φc) = v. Since the initial and boosting stages are
the only stages at which formulas are paired with the truth values t or f , it

follows that for any 〈β′′, α′′〉, if 〈φc, v〉 ∈ Aβ
′′

α′′ for v ∈ {t, f}, then any total

coherent extension A′ of Aβ
′′

α′′ is such that AMA′ (φc) = v.

Proof. If 〈β, α〉 is the initial stage, then φc evaluates to v in the models en-
gendered by any assignments at all, so the result holds. So suppose 〈β, α〉 is
a boosting stage. If Aβα is not a coherent truth-value assignment the claim is
trivially true. So suppose further that Aβα is coherent. By assumption φc has
value v in any model engendered by a total complete extension of Aβα. Then, if

Aβα ⊆ Aβ
′

α′ , any total coherent extension of Aβ
′

α′ is a total coherent extension of
Aβα, and so is one in whose engendered model φc has the value v.

The rest of the ancillary claims needed are results about the ranks of ut-
terances with the kind of structure relevant to the determination of coherence.
The constraints on rank will constrain the possible permutations of truth-value
assignments to the utterances mentioned in the coherence conditions. This in
turn will help restrict what is required to show that the truth-value assignment
function respects the requirements of coherence. For example, the following re-
sult concerns the relative rank of conjunctions and their conjuncts: conjunctions
are never assigned before their conjuncts.

Proposition 4.4. If φc = (ψc′ ∧ θc′′)c, then rank(ψc′), rank(θc′′) ≤ rank(φc)

Proof. Note that by definition SDA(ψc′), SDA(θc′′) ⊆ SDA(φc), relative to any
assignment A. Let rank(φc) = 〈β, α〉. If 〈β, α〉 is the initial stage, the result fol-
lows trivially. If 〈β, α〉 is a boosting stage, then φc has no semantic dependences

on Aβpred(α), so neither do ψc′ and θc′′ . As such, if they are not assigned already,

they are stable and will be assigned along with φc at 〈β, α〉. If 〈β, α〉 is a culling

stage, then φc is A
pred(β)
ω1 -minimal∗. By definition, if ψc′ or θc′′ are unassigned,

they are A
pred(β)
ω1 -minimal∗ as well, and are culled at 〈β, α〉. If 〈β, α〉 is a the

discarding stage, the result follows trivially.

And a final ancillary claim concerns the rank of ascriptions of truth-values
more generally.

Proposition 4.5. Suppose φc = Spψc′q where S is a semantic predicate. Then
rank(ψc′) ≤ rank(φc).

Proof. Let rank(ψc′) = 〈β, α〉. If 〈β, α〉 is the initial stage the result follows
trivially. If 〈β, α〉 is a boosting, culling, or discarding stage, then for all 〈β′, α′〉 <
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〈β, α〉, ψc′ /∈ Aβ
′

α′ , whence ψc′ ∈ SD
Aβ
′
α′

(φc) by condition (ii) of the definition

of semantic dependence. So φc will not be assigned at the boosting or culling
stages prior to 〈β, α〉 and the result holds.

With these ancillary claims established we are now ready to prove our co-
herence result.

Theorem 4.1. For all 〈β, α〉 < 〈0, ω1 + 1〉, Aβα is weakly extensible. It follows
that M∗ is a total coherent truth-value assignment.19

Proof. We show by induction that for all 〈β, α〉 ≤ 〈0, ω1 + 1〉

(A) all conditions (i)–(v) on coherence are satisfied by Aβα, and

(B) if 〈(Spψc′q)c, v〉 ∈ Aβα for some v and semantic predicate S, then
〈ψc′ , v〉 ∈ Aβα for some v.

Let 〈β, α〉 = 〈0, 0〉 be the initial stage. Then:

A0
0 satisfies conditions (i), (ii), and (v) of coherence since the allotment

of truth values in M does. It also satisfies conditions (iii), (iv) and
property (B) trivially.

Suppose for 〈β′, α′〉 < 〈β, α〉 (A) and (B) hold and suppose 〈β, α〉 is. . .

. . . a boosting stage.

(A) (i) Let φc = (¬ψc′)c, rank(φc)=〈β, α〉, and Aβα(φc) ∈ {t, f}. φc
and ψc′ share their semantic dependences relative to any as-
signment, so rank(ψc)=〈β, α〉. Now, φc is stably false on

Aβpred(α) iff ψc′ is stably true on it. Likewise φc is stably true

on Aβpred(α) iff ψc′ is stably false over it. So condition (i) holds

at Aβα.

(ii) Let φc = (ψc′∧θc′′)c. By proposition 4.4, rank(ψc′), rank(θc′′)
≤ rank(φc).
Suppose rank(φc) = 〈β, α〉. Then Aβα(φc) = t iff φc is stably

true on Aβpred(α) iff ψc′ and θc′′ are stably true on Aβpred(α) iff

Aβα(ψc′) = Aβα(θc′′) = t (by proposition 4.3 and the fact that
if either ψc′ or θc′′ were culled, φc would have been as well).

Likewise Aβα(φc) = f iff φc is stably false on Aβpred(α) iff one of

ψc′ and θc′′ is stably false, and the other stably true or false
on Aβpred(α) iff either Aβα(ψc′) = f and Aβα(θc′′) ∈ {t, f} or

Aβα(ψc′) ∈ {t, f} and Aβα(θc′′) = f .
Suppose instead rank(φc) > rank(ψc′) = 〈β, α〉. Suppose,
by way of contradiction, that rank(θc′′) ≤ 〈β, α〉. Then if

19In what follows to simplify notation I’ll use A(φc) = t instead of 〈φc, t〉 ∈ A—this abuse
of notation is legitimated by the proof itself.
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rank(θc′′) is the initial stage, or a boosting stage, by propo-

sition 4.3, θc′′ is stable on Aβpred(α). So, by assumption, is

ψc′ . But then so is φc—a contradiction. Moreover, rank(θc′′)
cannot be a culling stage, since if θc′′ were culled at some
stage, ψc′ and φc would have been culled at that same stage—
another contradiction. So rank rank(θc′′) > 〈β, α〉. Thus
θc′′ /∈dom(Aβα), and condition (ii) is trivially satisfied.

(iii) Let φc = (Tpψc′q)c, and supposeAβα(φc) ∈ {t, f}. If rank(φc) <
〈β, α〉 the result follows from the induction hypothesis. So let
rank(φc) = 〈β, α〉. Then rank(ψc′) = 〈β′, α′〉 < 〈β, α〉, other-
wise by definition of semantic dependence ψc′ ∈ SDAβ

pred(α)
(φc),

a contradiction. So Aβα(φc) = t iff φc is stably true on Aβpred(α)
iff Aβpred(α)(ψc′) = t iff Aβα(ψc′) = t.

(iv) The proof is analogous to that for (iii).

(v) When an utterance φc is boosted, it receives a constant value
across a range of engendered models, which make no distinc-
tions among tokens of sentence types. Given this, the condi-
tion follows from proposition 4.3.

(B) Follows directly from the claim that rank(ψc′) ≤ rank(φc), which
holds by Proposition 4.5.

. . . a culling stage:

(A)(i,ii) By the induction hypothesis A
pred(β)
ω1 is weakly extensible,

hence coherent. Since at the culling stage we only add pairs
of the form 〈φc, u〉, properties (i) and (ii) on coherence will be
preserved.

(iii) Let φc = (Tpψc′q)c and Aβα(φc) ∈ {t, f}. So rank(φc) =
〈β′, α′〉 < 〈β, α〉 where 〈β′, α′〉 is a boosting stage, and the
result holds by the induction hypothesis.

(iv) As with (iii).

(v) Follows from the fact that only pairs of the form 〈φc, u〉 are
added.

(B) As before, follows from Proposition 4.5.

. . . a gathering stage:

(A)/(B) Both follow from the induction hypothesis.

Now that we know that M∗ is a function, I’ll follow through on my earlier

abuse of notation and write 〚φc〛
M∗

= t, 〚φc〛
M∗

= f , and 〚φc〛
M∗

= u when
〈φc, t〉 ∈ M∗, 〈φc, f〉 ∈ M∗, and 〈φc, u〉 ∈ M∗ respectively.
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5 Properties of the Semantics

Now that we’ve established that M∗ is an assignment, we can begin to explore
its structural features. Right off the bat we can say something very informative
about how familiar an assignment M∗ is by comparison with more standard
models. We can do this by comparing M∗, which is a truth-value assignment,
with the standard model that the assignment engenders, MM∗ as follows.

Proposition 5.1. For all φc ∈ UM

〚φc〛
M∗

= t ⇒ 〚φ〛MM∗ = t

〚φc〛
M∗

= f ⇒ 〚φ〛MM∗ = f

〚φc〛
M∗

= u ⇐ 〚φ〛MM∗ = u

The converses of each claim may fail.

Proof. If 〚φc〛
M

= t then φc was decided at the initial stage or some boosting
stage 〈β, α〉. So φ evaluates to true on the models engendered by all total

coherent extensions ofAβα. ButMM∗ is just such a model. Likewise for 〚φc〛
M

=
f . The third claim follows from the first two and the fact that M∗ is total.

Utterances which self-attribute U are counterexamples to the converse of
the first claim. Sentences which self-attribute ¬U are counterexamples to the
converse of the second claim. Both are counterexamples to the third.

This simple result merits several comments.
First, it is important to note that the failures of all converse entailments

are not limitations of the system. On the contrary, any system which embodies
a resolution of the two-line paradox like the one I endorse must witness these
kinds of departures from standard models. Those failures are part of the point of
developing the kind of truth-value allotment that semantic extensions represent.

Bearing this point in mind, the result shows that M∗ is a truth-value as-
signment among utterances which is exactly that provided by a more standard
trivalent model (without utterance sensitivity), except that some additional ut-
terances are assigned u. That is, the model is a kind of minimal departure from
standard compositional modes of truth-value assignment required to accommo-
date the token-sensitivity which motivates the system.

The result also gives us some resources to describe the logic of semantic
extensions by tracing out its relationship to the logic of the base models of §1.
There are a number of ways of extending a notion of logical consequence to the
trivalent setting, but I’d like to focus here on the notion of what is sometimes
called ‘Strawson entailment’.

Definition 5.1. Γ Strawson entails φ, noted Γ |=se φ, if for all total base

models M, if 〚γ〛M = t for all γ ∈ Γ and 〚φ〛M 6= u, then 〚φ〛M = t.
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Strawson entailment is of special interest since it effectively captures the con-
tribution made by logical form to truth-preserving inference in trivalent models
where only truth is treated as a designated value. There are also some grounds
to think that a version of Strawson entailment is most effectively adopted as
a logical consequence relation for natural language in which highly projective
semantic defect, like that I’ve posited, is present.20

The Strawson entailment relation is a subset of the bivalent entailment rela-
tion |=b (for our language with our generalized quantifiers). After all, if Γ |=se φ
then Γ |=b φ, since every bivalent base model is a form of trivalent base model.
Note also that as concerns propositional entailment, Strawson entailment sim-
ply coincides with the bivalent consequence relation, which is classical. If there
is a some trivalent base model invalidated a classical propositional entailment
from Γ to φ, since Γ and φ are truth-evaluable in the counter-model, all their
propositional components are truth-evaluable, so this would be counterexample
to the inference in the classical setting as a well—a reductio.21

Now, if we take Strawson entailment to be our logic for the base setting, we
see that semantic extensions respect it.

Proposition 5.2. Let Γ′ ⊆ UM, Γ be the set of sentences corresponding to the

utterances appearing in Γ′, and φc′ ∈ UM. Then if for all γc ∈ Γ′, 〚γc〛
M∗

= t,

〚φc′〛
M∗ 6= u, and Γ |=se φ, then 〚φc′〛

M∗
= t.

Proof. If 〚γc〛
M∗

= t, 〚γ〛MM∗ = t by Proposition 5.1. Since 〚φc′〛
M∗ 6= u, by

the same token 〚φ〛MM∗ 6= u. Since Γ |=se φ, 〚φ〛MM∗ = t, so 〚φc′〛
M∗ 6= f and

〚φc′〛
M∗

= t.

This is a welcome result, because it shows that although significant alter-
ations to one’s logic may come with the accommodation of trivalence or gen-
eralized quantification, aside from token-sensitivity no further alterations to
logical consequence accrue through the accommodation of semantic vocabulary.
Whatever departures from more familiar logics are required in the system come
in with tools that can be independently motivated in the need to adequately
describe the operations of natural language.

Let’s note some further simple properties we would expect the assignment
M∗ to exhibit. It is (I) a complete allotment of truth values (II) extending
the original allotment provided by our base model, which (III) commutes as
expected with negation and (IV) conjunction, and (V) validates all non-defective
utterances of Strawson validities (where a Strawson validity is a sentence true
when non-defective in all total base models from §1).

Proposition 5.3.

20See Shaw (forthcominga) for a discussion.
21The same would be true on the strong Kleene logic. Though not all propositional compo-

nents would be truth-evaluable, we could render their elementary propositional components
truth-evaluable consistently with the same truth-value assignments to logical compounds,
since on the strong Kleene scheme changing a constituent value from u to t or f never changes
the truth-value of a composite from t to f or vice versa.
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(I) For all φc ∈ U , 〚φc〛
M∗ ∈ {t, f, u}

(II) For all φc ∈ UM

〚φ〛M = t ⇒ 〚φc〛
M∗

= t

〚φ〛M = f ⇒ 〚φc〛
M∗

= f

〚φ〛M = u ⇒ 〚φc〛
M∗

= u

(III) If φc = (¬ψc′)c then

〚φc〛
M∗

= t⇔ 〚ψc′〛
M∗

= f

〚φc〛
M∗

= f ⇔ 〚ψc′〛
M∗

= t

(IV) If φc = (ψc′ ∧ θc′′)c

〚φc〛
M∗

= t⇔ 〚ψc′〛
M∗

= 〚θc′′〛
M∗

= t

〚φc〛
M∗

= u⇔ 〚ψc′〛
M∗

= u or 〚θc′′〛
M∗

= u

(V) If φ is a Strawson validity, then if 〚φc〛
M∗ 6= u, 〚φc〛

M∗
= t.

Proof. (I) and (II) are consequences of the fact that M∗ is a total assignment
extending AM. (III) and (IV) follow from the fact that M∗ is coherent. (V)
follows from Proposition 5.1.

It is more difficult to state the results one would like for quantifiers, given
that the assignment function does not apply to utterances that are not tokens of
full sentence types. Nonetheless, we can get a basic intuitive result on quantifiers
by using the connections between M∗ and the model it engenders M∗M to
exploit the satisfaction relation that we get from the latter engendered model.
Once we do this, we see that non-defective quantified utterances have the truth-
values one would expect.

Proposition 5.4.

(VI) If φc = (∃v1 : ψ(v1))(θ(v1))c, then provided 〚φc〛
M∗ ∈ {t, f}

〚φc〛
M∗

= t ⇔ {a ∈MM | 〚ψ(v1)〛MM∗ ,g[v1→a] = t} ∩
{a ∈MM | 〚θ(v1)〛MM∗ ,g[v1→a] = t} 6= ∅

(VII) If φc = (∀v1 : ψ(v1))(θ(v1))c then provided 〚φc〛
M∗ ∈ {t, f}

〚φc〛
M∗

= t ⇔ {a ∈MM | 〚ψ(v1)〛MM∗ ,g[v1→a] = t} ⊆
{a ∈MM | 〚θ(v1)〛MM∗ ,g[v1→a] = t}
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Proof. The left-to-right direction of both (VI) and (VII) follow from proposition
5.1. The right-to-left directions follow once we see that if the right condition
holds, then for all 〈β, α〉, there is always a total coherent extension of Aβα (namely
M∗) such that φ evaluates to true on the model engendered by that assignment.
So if φc is ever boosted, it must boost to t.

Of course, we don’t merely want to note global results about the distribution
of truth-values generally, but those relevant to the system as a theory of truth.
Here are the two important results: (VIII) the truth value of a first utterance
ascribing truth to a second utterance is, when non-defective, true just in case the
second utterance is, and (IX) when ascribing semantic defect is non-defective,
the ascription is true just in case the utterance to which defectiveness is ascribed
is defective.

Proposition 5.5.

(VIII) If φc = (Tpψc′q)c, and 〚φc〛
M∗ 6= u, then

〚φc〛
M∗

= t⇔ 〚ψc′〛
M∗

= t

(IX) If φc = (Upψc′q)c, and 〚φc〛
M∗ 6= u, then

〚φc〛
M∗

= t⇔ 〚ψc′〛
M∗

= u

Proof. Follows from the coherence of M∗.

Some authors may have an interest in preserving something broadly like what
Field (2008) calls ‘the intersubstitutivity principle’: that the result of substi-
tuting Tpφq for φ, and vice versa, leads to logical equivalents. For the present
system the closest analog would be:

(VIII∗) If φc = (Tpψc′q)c, then for all v

〚φc〛
M∗

= v ⇔ 〚ψc′〛
M∗

= v

This property can be achieved, I believe, by simply changing condition (ii) of
the definition of engendered models (Definition 2.4) as follows.

(i) TMA
t = {x : A(x) = t}

(ii′′) TMA

f = {x : A(x) = f}

This ensures that at ascriptions of T are boosted they always pick up the values
of their ascribed utterances. If an ascription of T is culled or discarded, this still
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preserves (VIII∗), since both the utterance ascribing truth and the utterance to
which truth is ascribed will be simultaneously culled or discarded.22

I prefer the formulation on which ascriptions of truth to defective utterances
count (when non-defective) as false. This allows, as we will shortly see, for the
appropriate statement of semantic generalities. But there is no bar to retooling
the truth-predicate as just noted, or even to including two truth-predicates, or
a single truth-predicate whose attributions are context sensitive and may shift
between the two interpretations.

Let’s turn then to the next kind of statement which semantic extensions are
particularly suited to accommodate, namely semantic generalities. Using Fα
as an abbreviation for ¬Tα ∧ ¬Uα, in order to talk of plain falsehood, we see
that we can truly state the metalanguage analogs of (I)–(V), and (VIII)–(IX)
above in the object language. That is, the system can do this provided the
base language has the resources to express utterance-hood (S), being a truth,
falsehood, or defective utterance of the base modelM (TM, FM, UM), negation
(neg), conjunction (conj), application of the truth and defectiveness predicates
(tapp, uapp), and the form of Strawson validity (V alid).23 The hindrance to
object language statement of the analogs of (VI)–(VII) is the acknowledged lack
of conditions on quantification for coherence, something I’ll comment on further
in §6.

Proposition 5.6. Utterances φc of the following form are such that 〚φc〛
M∗

= t
provided φc ∈ UM.

(I′) (∀v1 : Sv1)(Tv1 ∨ Fv1 ∨ Uv1)

(II′) (∀v1 : Sv1 ∧ TMv1)(Tv1)

(∀v1 : Sv1 ∧ FMv1)(Fv1)

(∀v1 : Sv1 ∧ UMv1)(Uv1)

(III′) (∀v1, v2 : Sv1 ∧ Sv2 ∧ v1 = neg(v2))((Tv1 ↔ Fv2) ∧ (Fv1 ↔ Tv2))24

(IV′) (∀v1, v2, v3 : Sv1 ∧ Sv2 ∧ Sv3 ∧ v1 = conj(v2, v3))(Tv1 ↔ Tv2 ∧ Tv3)

(∀v1, v2, v3 : Sv1 ∧ Sv2 ∧ Sv3 ∧ v1 = conj(v2, v3))(Uv1 ↔ Uv2 ∨ Uv3)

22The result is, as I say ‘broadly like’ an intersubstitutivity principle. It is often unobvious
how to translate alleged desirable conditions from the type-based setting to the token-based
setting, and Field’s condition is no exception. I take my formulation here to capture the
rough spirit of the condition. This should be fine, since trying to take it too seriously in the
token-based setting leads to incoherent or false principles. For example, consider that it is
not equally true to write, on the chalkboard C, an instance of the sentence type “The string
“true” only appears once in the sentence on chalkboard C” and the result of ‘substituting’
in a truth-attribution ““The string “true” only appears once in the sentence on chalkboard
C” is true”. Also, regardless of whether we go for a context, or token-sensitive system, it is
generally acknowledged that something closer to sentence tokens, rather than sentence types,
are the proper bearers of truth, so in general the problem of transposing the intersubstitutivity
criterion is a problem for the principle, not a problem with the token-based setting.

23Note: tapp(v1, v2) reads: v1 is the result of applying the truth-predicate to a term denoting
v2. Likewise for uapp.

24I’m here using the obvious abbreviations to simplify the notion of generalized quantifica-
tion.
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(V′) (∀v1 : Sv1 ∧ ¬Uv1 ∧ V alid(v1))(Tv1)

(VIII′) (∀v1, v2 : Sv1 ∧ Sv2 ∧ tapp(v1, v2) ∧ ¬Uv1)(Tv1 ↔ Tv2)

(IX′) (∀v1, v2 : Sv1 ∧ Sv2 ∧ uapp(v1, v2) ∧ ¬Uv1)(Tv1 ↔ Uv2)

Proof. All are easily seen to be assigned at A0
1 by the definition of a total

coherent assignment.

As regards expressing object language equivalents of metalanguage state-
ments about the logic of the system, expression is again hindered by the fact
that coherent truth-value assignments have no conditions on quantification built
into them. If we provisionally ignore this complication, focusing on the proposi-
tional logic of M∗, we’ve seen that the Strawson valid propositional inferences
are just the normal valid inferences of bivalent propositional logic. Thanks to
the conditions on coherence, semantic extensions can ‘see’ this aspect of their
consequence relation, as long as the base language can define the a bivalent
propositional consequence relation, PropCqn (though defined over utterances).

Proposition 5.7. If φc is of the following form

(∀v1, v2 : Sv1 ∧ Sv2 ∧ PropCqn(v1, v2))(Tv1 ∧ ¬Uv2 → Tv2)

〚φc〛
M∗

= t, provided φc ∈ UM.

Proof. Again, this is seen to be assigned t at A0
1 due to the conditions on co-

herence.

The system would be able to ‘see’ and express its full logic, in the object lan-
guage, if conditions for quantification were successfully built into the definition
of coherence (though doing this successfully may of course be a non-trivial task).

Because of the shifting nature of the semantic dependence relations, the sys-
tem is also able to capture somewhat more complex semantic generalities whose
truth needn’t turn on conditions of coherence. Here are two simple examples.

Proposition 5.8. Let D be a formula of L with one free variable and without
semantic vocabulary which, in M, defines a set D such that

D ∩ UM ⊆ {ψc′ | 〚ψc′〛M
∗

= t}

and let φc be
(∀v1 : Sv1 ∧Dv1)(Tv1)

Then 〚φc〛
M∗

= t provided φc ∈ UM.

Proof. If φc is assigned at a boosting stage the result follows, so we need only
show that φc is not culled or discarded. If φc were culled at 〈β, α〉, it would

have semantic dependences on A
pred(β)
ω1 including unassigned utterances among

the utterances in D (otherwise φc would have boosted to truth at an earlier
stage). But then these utterances would be culled as well—contradicting our
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assumption. If φc were discarded it would await Aω1
0 before assignment. But

we know the utterances from D are all assigned before Aω1
0 . But then φc would

have boosted to truth after all those utterances were assigned, and so couldn’t
be discarded.

Proposition 5.9. Let D be a formula of L with one free variable and without
semantic vocabulary which, in M, defines a set D such that there is some ψc′

is such that 〚ψc′〛
M∗

= t and

ψc′ ∈ D ∩ UM

Then if φc is
(∃v1 : Sv1 ∧Dv1)(Tv1)

〚φc〛
M∗

= t provided φc ∈ UM.

Proof. Let γc′′ be the true utterance in D which is of lowest rank, and consider
any 〈β, α〉 < rank(γc′′). (If there are no such 〈β, α〉, rank(γc′′) is the initial stage
and the claim follows immediately.) Consider the non-empty set

K = {κc ∈ UM|κc ∈ D, 〚κc〛
M∗ ∈ {t, f} and κc /∈ dom(Aβα)}

By considering M∗ and the weak extension of Aβα we know that some superset
K ′ of K matters to φc relative to Aβα. Note that K ′ does not contain elements
from

{κc ∈ UM|κc ∈ D and 〚κc〛
M∗

= u}

Now, unless φc has unspecifiable dependences, some subset of K ′ really matters
to φc, and whatever that subset is, it must contain elements from K. So whether
or not φc has unspecifiable dependences it is semantically dependent, relative
to Aβα, on unassigned utterances that will be boosted to truth or falsity. This
in turn means that φc is not boosted or culled at any of those stages. So, where

rank(γc′′) = 〈β′, α′〉, φc /∈dom(Aβ
′

α′). This means φc will then immediately boost
to truth at the next stage.

6 Limitations and Imperfections of the Model

There are two main areas one might take issue with the system given: its general
approach to the paradoxes, and its ability to express enough aspects of its own
semantic structure.

As regards the handling of paradox, I will have little to say here. Whether
paradoxical utterances embody a form of semantic defect, what this would im-
ply, and how it should be modeled are complex questions which no formalism, no
matter how desirable its features, will settle on its own. We need need an inde-
pendent understanding of semantic defect and its source that engages questions
about the nature and purpose of assertion. Such issues go well beyond the scope
of this paper. But the formalism here does, as I have alluded to, embody ideas
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relevant to paradox developed and defended by myself and others elsewhere—for
example the idea that we should adopt a kind of token-sensitive resolution to
versions of two-line paradox. If those ideas and arguments are sound, then the
present formalism would go a ways to showing that a conception of the mean-
ing of the semantic vocabulary as procedurally governed, and coupled with a
conception of paradox as a form of semantic defect, can be supported with a
rigorous formalism with some intuitively desirable features.

But just how desirable are the features of the formalism, especially in areas
of relevance to gauging the value of a theory of truth? There are three main such
areas, as I see the project of giving a theory of truth: the logic of the system,
the behavior of the truth predicate and other semantic vocabulary, and the
expressive power of the system especially as regards its own semantic structure.
The first two features of the system we have already seen: its logic is a form
of Strawson entailment; applications of the truth-predicate to an utterance,
when non-defective, track whether that utterance is true;25 and attributions of
semantic defect to an utterance, where themselves non-defective, are true just
in case the utterance is defective.

But the final feature of relevance to truth—expressive power—may not be
so obvious from the system’s construction, and merits a few special remarks.
The question of whether a theory of truth expresses everything we would like
it to express can be divided into two sub-questions: does the system express
every concept we would like it to express? And does the system express every
proposition or fact we would like it to express.26

Take the question about concepts first. What kinds of conceptual expres-
sive resources the system can in principle accommodate turns on whether the
meaning of semantic terms is indeed given by a kind of procedure, in the sense
elucidated by the semantics I have been elaborating. If the proper way of talking
about truth, falsity, defectiveness, and other semantic properties is through a
predicate whose use is procedurally governed, then there is good reason to think
that the system (or some reasonable variant of it) does express every concept
relevant to the system’s operation, or at least could accommodate every concept
of interest ‘all at once’. After all, there are only three truth-values assigned in
the process of generating the semantics, each of which has a procedurally gov-
erned predicate which is tailored to track the presence of those properties as well
as could be done. The properties represented by the truth-values allotted in the
semantics are, of course, not the only semantic properties there are. But there
seems to be no in principle bar to accommodating as many semantic terms, with
procedural rules, as one would like. Properties like reference, and satisfaction
can be given such a treatment as well. Moreover non-procedural concepts, ex-

25As I noted, however, the rules governing the truth-predicate’s semantics can easily be
changed so that it always shares a value with its compliment utterance if desired.

26When we ask if a system does, or can, express every concept we want it to we must read
the term “concept” broadly, to include not only the ability to talk about certain properties,
but also to include logical concepts like negation. At least, we must do so if the first question
is to combine with the second to be exhaustive. I won’t be able to delve into the details of
the latter kinds of logical concepts here.
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pressed by predicates associated with standard extensions can be integrated as
desired, subject of course to cardinality limitations. Talk of any particular set of
utterances can be integrated in this non-procedural way into the system, though
interpreting a predicate with a particular set of utterances will ensure that this
set is not the set of truths, falsehoods, or defective utterances of the system.
If the procedural conception of semantic terms is right this is no accident—in
fact, this is just a manifestation of the fact that extensions as semantic values
are not properly suited for the representation of semantic properties.27

When we turn from questions about the expressibility of concepts to the ex-
pressibility of facts or propositions, on the other hand, there are uncontroversial
cases of expressive limitation present in the system. Some of these expressive
limitations I am happy to concede are genuine imperfections, but others I have
tried elsewhere to defend as essential limitations, and it is worth flagging the
difference between them.

First off, though the system is geared towards the proper expression of se-
mantic generalities, and the system goes a fair distance to that end as seen,
for example, in Proposition 5.6, there are many generalities which elude proper
assignment in the system I have presented. Examples include formalizations, in
the system, of certain metalanguage statements: for example, “If a universally
quantified statement is true, then every set of elements satisfying the quanti-
fier restrictor also satisfies the quantifier matrix.” These statements are true
statements about the system, and there is every reason to hope or expect the
system to be able to capture their truth ‘from within’. As such the examples call
for various kinds of emendations to the system. Statements about truth-value
distributions require new, tighter requirements on the conditions of coherence,
and statements about quantification require adopting truth-value assignments
that range over sequence-utterance pairs, along with a careful formulation of
the relevant added conditions on coherence. The added conditions on coherence
must be such to preserve the truth of the coherence result of §4. Though many
of these emendations are ones I have not ventured myself, I hope the formalism
here can supply the sense that conditions tight enough to capture suitable ‘de-
sirable’ formal constraints on a system can be found, which are also lax enough
to be part of a coherence proof like the one I have given. I admit though, that
in this regard the formalism I’ve given here is but a first step, and that without
the amendments the system remains incomplete.28

27Again, see Shaw (forthcomingb) for a discussion of these issues.
28Another, perhaps more promising line is to divide up two jobs I have given to the truth-

value assignments over which supervaluations are performed during the course of the con-
struction. On the one hand these truth-value assignments are used to determine semantic
dependence relations. On the other, they are used to help ensure the system captures ap-
propriate sets of semantic generalities. Though it would distort the semantic dependence
relations, at least given my gloss on them, it might be more helpful to allow supervaluations
to range more broadly—perhaps as broadly as possible—over truth-value assignments extend-
ing an assignment one has so far in determining semantic dependences, and to relegate the
task of assigning truth-values to semantic generalities to a separate rule in the formalism,
akin to boosting or culling. This would still operate broadly in the spirit of the procedural
conception of truth, but might ease the kinds of burdens that arise in proving a ‘harmony’
result as conditions on coherence becoming increasingly stringent. Of course the right kinds
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But there are other kinds of facts about the allotment of truth-values that
the system does not capture, which no simple amendments to the system would
fix, and which I think the system should not be expected to ‘fix’. These arise
exclusively for certain kinds of defective utterances which object language ut-
terances of the system cannot truthfully classify as defective. What kinds of
statements might fit this description will depend on the range of utterances
available in UM, but let me quickly give two simple examples. One kind of
defective statement that eludes classification as defective are those which ‘artifi-
cially’ situate themselves as high in the ranking as any other utterance ascribing
them semantic properties. For example a formal equivalent of “anyone who says
of what I’m now saying that it is false or defective, are saying something false or
defective” could likely be defective, though no other object language utterance
could truthfully report this.29

Another kind of utterance which eludes classification as defective are those
in semantic chains which are discarded. Consider an infinite array of utterances,
each one saying of the next that it is defective. My system claims each of these
utterances is defective in some sense I haven’t fully described here. We can say
this in the metalanguage in which we are describing the features of the truth
truth-value assignment given by M∗, but it is clear that any object language
attempt to say of an utterance in such a semantic chain that it is defective will
simply become part of a semantic chain itself, dooming itself to defectiveness.
This seems to point to an essential expressive limitation of the system—one
which could only be avoided, if at all, by a wholesale rejection of large portions
of the system and starting afresh, or giving up my aims of modeling a natural
language like English, which has no essentially stronger metalanguage in terms
of elementary semantic resources.

I acknowledge these expressive limitations, but I do not count them as a
defect mandating rejection of my system or my aims. This is, I think, helpfully
seen through consideration of discarded semantic chains as an example. It is an
artifact of our abstract modeling situation that there is a position from which
we can make a principled division between object language and metalanguage,
and hence a position from which we can say where a lengthy semantic chain
stretching between object and metalanguage is ‘cut off’, and reopened for the
simple kinds of assignment witnessed in the boosting phases of my construction.
In natural language use of semantic vocabulary, there is no principled separation
between object language and metalanguage from which such a distinction can be
drawn—no privileging of my use of “true” over yours, or privileging semantic
talk in English over semantic talk in Italian or Igbo. There is no strategy I
know of for a coherent and satisfying treatment of such semantic chains, in
natural languages, as simply and intelligibly representational. There seems to
be nowhere to begin.

So I see no hope of avoiding some such expressive limitations, but I cannot

of conditions for the new rule capturing generalities would have to be found. I leave the task
of finding such conditions to future research.

29Compare some of the examples discussed by Gaifman (1992, 2000) under the heading of
“holes” and “black holes”.
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hide the drastic consequence of this way of thinking about the relevant problem-
atic utterances. To concede their existence in any model for natural language,
and to conjointly make the claim that natural languages contain all the basic
semantic expressive resources there are (say, tools for talking of truth-values),
entails that there are, in some sense, ineffable truths about semantics—true
pieces of information which cannot be truthfully reported, at least with the
standard kinds of compositional mechanisms for the determination of content
that I have been appealing to in my formalism. I myself am willing to face this
as a consequence, and I have independently argued for its inevitability provided
that we allow the truth predicate is governed by coherent norms.30 No few
words will do justice to this aspect of my program here, though, so I will have
to be content to flag the unavailability of certain reports about semantic defect
as essential expressive limitations of the system whose status as imperfections
in the system is, I believe, up for dispute.
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